Technical Note: Deep learning based MRAC using rapid ultrashort echo time imaging
نویسندگان
چکیده
منابع مشابه
Designing long-T2 suppression pulses for ultrashort echo time imaging.
Ultrashort echo time (UTE) imaging has shown promise as a technique for imaging tissues with T2 values of a few milliseconds or less. These tissues, such as tendons, menisci, and cortical bone, are normally invisible in conventional magnetic resonance imaging techniques but have signal in UTE imaging. They are difficult to visualize because they are often obscured by tissues with longer T2 valu...
متن کاملUltrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA).
Sequences with ultrashort echo times enable new applications of MRI, including bone, tendon, ligament, and dental imaging. In this article, a sequence is presented that achieves the shortest possible encoding time for each k-space point, limited by pulse length, hardware switching times, and gradient performance of the scanner. In pointwise encoding time reduction with radial acquisition (PETRA...
متن کاملPET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
UNLABELLED Integrated PET/MR systems are becoming increasingly popular in clinical and research applications. Quantitative PET reconstruction requires correction for γ-photon attenuations using an attenuation coefficient map (μ map) that is a measure of the electron density. One challenge of PET/MR, in contrast to PET/CT, lies in the accurate computation of μ maps. Unlike CT, MR imaging measure...
متن کاملUsing adiabatic inversion pulses for long-T2 suppression in ultrashort echo time (UTE) imaging.
Ultrashort echo time (UTE) imaging is a technique that can visualize tissues with sub-millisecond T(2) values that have little or no signal in conventional MRI techniques. The short-T(2) tissues, which include tendons, menisci, calcifications, and cortical bone, are often obscured by long-T(2) tissues. This paper introduces a new method of long-T(2) component suppression based on adiabatic inve...
متن کاملTechnical Note fMRI of the brainstem using dual-echo EPI
The brainstem is the part of the human brain that plays a pivotal role in the maintenance of many critical body functions. Due to the elevated level of cardiogenic noise, few fMRI studies have investigated the brainstem so far. Cardiac-gated echo-planar imaging with acquisition of two echoes per excitation (dual-echo EPI) is one method that significantly reduces cardiogenic noise and, thus, all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Physics
سال: 2018
ISSN: 0094-2405
DOI: 10.1002/mp.12964